J425. Proposed by Titu Andreescu, University of Texas at Dallas, USA

Prove that for any positive real numbers a, b, c

$$
(\sqrt{3}-1) \sqrt{a b+b c+c a}+3 \sqrt{\frac{a b c}{a+b+c}} \leq a+b+c .
$$

Solution by Arkady Alt, San Jose, California, USA.
Assume $a+b+c=1$ (due homogeneity of the inequality) and denote $p:=a b+b c+c a, q:=a b c$.

Then $p=(a b+b c+c a)(a+b+c) \geq 9 a b c=9 q, p=a b+b c+c a \leq \frac{(a+b+c)^{2}}{3}=\frac{1}{3}$ and original inequality becomes $(\sqrt{3}-1) \sqrt{p}+3 \sqrt{q} \leq 1 \Leftrightarrow 1-(\sqrt{3}-1) \sqrt{p}-3 \sqrt{q} \geq 0$.
We have $1-(\sqrt{3}-1) \sqrt{p}-3 \sqrt{q} \geq 1-(\sqrt{3}-1) \sqrt{p}-3 \sqrt{\frac{p}{9}}=1-(\sqrt{3}-1) \sqrt{p}-\sqrt{p}=$ $1-\sqrt{3 p}=\frac{1-3 p}{1+\sqrt{3 p}} \geq 0$.

